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THE GEOMETRY OF THE

SINGULARITIES OF HARMONIC FUNCTIONS

I. INTRODUCTION

1. Abstract

The objective of this investigation is to shed some light

on the problem of finding for harmonic fmtions in three

variables an analogue to the Mittag-Leffler representation

for meromorphicfunctions in one variable given their poles.

Mittag-Leffler Representation: Let b I be a seluence of
V

complex numbers with li b = * , and let P (C) be poWl-
- V VV

nomials without constant term. Then there are functions which

are meromorphic in the whole lane with oles at the oints

bV and the corresponding singular parts P (1/(z-b ))

Moreover, the most general meromorphic function of this kind

can be written in the form

f(z) = [i (-) p p(z)] + g(z) (1-1.1)

v v

where the p (z) are suitably chosen fixed polynomials and
-~ ~~ V

g(z) is analytic in the whole plane.

AuAromorphic function may also be represented in terms of

its poles by utilizing the Weierstrass representation which

expresses an entire function in terms of its zero's.

Weierstrass Representation: There exists a meromorphic

function with arbitrarily prescribed zeros a provided
n

that, in the case of infinitely many zeros, a .Ever
n 

1



R. M. BROWN

entire function with these and no other zeros can be written

in the form

z z 1(2 2 Z)n

,, z + a (Z)+ + 
f(z) = zmeg(z)f[ ( an)e +-(1.2

n=l

where the product is taken over all. a A 0 , the m aren n
certain int1egers, and g(z) is an.entire function.

Since every vaeromorphic function is the quotient of two

entire functions, the Weierstrass representation may be used

to express a meromorphic function in terms of its poles and

its zeros.

The problem of extending these results to analytic func-

tions of several complex variables was posed by Cousin C.2]

in 1895. His "First Problem" was to find the analogue of

the Mittag-Leffler representation and his-"Second Problem"

was to find the analogue of the'lWeierstrass representation.

Cousin's First Problem: Suppose that to every point P of

the space C there corresponds a neighborhood Vp of P

and a function £p morormorphic in that neighborhood. Sup-

pose also that if two such neighborhoods VP and VQ of

the points P and Q have a com-on portion, then the func-

tion f - fQ is holomorphic in V 0 V . Find a function

F meromorphic at all points of the space and such that

F - f is holomorphic in V P
P - ~- P

2
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Cousin's Second Problems Suppose that to every p2Jnt P of

the space n there corresponds aneigborhood v of P

and a function meroorphic in that neighborhood. §2-
P M

pose also that if two such neighborhoods V and V of
P Q

the points P and Q have a common portion, then the func-

tion f PJ is holomorphic and different from zero in

V. n V . Find a function F meromorphic at all oints of

the space en and such that F/f is holomorphic and differ-

ent from zero in V
P

One way in which harmonie functions differ from orouor-

phlc functions is that they form a linear space rather than

an algebra. Both the class of eromorphic functions and the

class of harmonic functions are closed under addition and sub-

traction. This allows for the possibility of finding for

harmonic functions an analogue to the Mittag-Leffler represen-

tation and Cousin's first problem. Unlike meromorphic func-

tions, however, the class of harmonic functions are not closed

under multiplication and division. As a result one would not

expect to find for har.ionic functions an analogue to the

Weierstrass representation o to Cousin's second problem.

As a simple example of a harmonic function and its singu-

larities consider

H(a) = Z C3 (I-.3)

where, following the oonvention of smming on i from 1 to 3,

r = (z,-c±)(Zi-c±)]*. (I-1.4)

The singularity points of this function are the solutions of

3
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(z-c) = 0 (I-1*5)

This is the equation of a cone, in the complex space C 

with its vertex at the point = , and with isotropic

lines as its generators. We will express z and in terms

of their real and imaginary parts as

= + iy (Il.S)

and

c =a + ib . (I-1.7

When the vertex of the cone is a real point, i.e.

c =a (-1.8)

and we restrict our, attention to the real space R3 , we

have an isolated singular point

x = a . (I-1.9)

To find the set of singularities in R3 when c is not a

real point we take the real and imaginary parts of equation

(I-1.5) and set! y = .

2 - 2 
(x-a) - b =0O (1-1.10)

b.x-) 0= 0 (1-1.11)

Equation (-1.10) represents a sphere with its center at

x = a and with a radius R = |Ik . Equation (-1.11) rep-

resents a plane with a normal vector b and passing through

4
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the point x a . We obtain the set of singularities in

R3 by intersecting Equations (I-1.10) and (-1.11) which

results in a circle with its center at x = a and with thq

vector normal to its plane.

We know that to specify the singularities of acoapio

function in one variable we should specify a discrete set of

points. Likewise, if we wish to specify te singularities of

a harmonic function, we should know what sort of geometric

objects may be used. The present work endeavors to answer

this question. Having determined the geometrical nature of

the singularities, we then proceed to determine how we may

represent a harmonic function in terms of its given singu-

larities.

'We shall consider the geometry of certain sets of

possible singularities for harmonic functions defined over

C3 which we shall call singularity sets. The result will

be a characterization of the singularity sets by simpler

geometric forms which may be used to categorize the singu-

larity sets and their corresponding harmonic functions.

R. P. Gilbert (G.7, p. 70] has shown that the singu-

larity sets are developable surfaces in . In the geometry

of the real space R3 a developable surface is either a

plane, a cylinder, a cone, a tangent surface, or a composition

of these [K.1, p. 185]. We may extend the definitions of

these surfaces in a natural way to the complex space C3

It is shown in Sections (I-3) and (III-3) that the singularity

sets e are considering are either tangent surfaces or cones

Li
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in C3

A tangent surface may be completely characterized by

its edge of regression. It is found in Section (III-1) that

the edge of regression of a singularity set is characterized

by the fact that it is an isotropic curve. In Section (III-2)

it is shown that the edge of regression is also characterized

by the fact that its projection onto either the real or the

imaginary space is a inimal surface. We also find in Section

(III-2) that any minimal surface will in this way characterize

a singularity set.

If the singularity set is a cone, we find in Section

(III-3) that it may be characterized by its vertex along

with the fact that its generators are isotropic lines.

In analogy to the Mittag-Leffler representation for mero-

morphio functions in one variable, in Section (V-1) we give

a general representation for harmonic functions in terms of

their singularity sets, characterized by minimal surfaces

whose parametric equations are given. In Sections (V-2) and

(V-3) particular examples of this representation are given.

The minimal surfaces considered in these examples are the

catenoid and the right helicoid.

2. Previous Results

One approach to the tudy of partial differential equa-

tions is the generation of solutions by means of integral

operators applied to analytic functions. As a simple example

of this idea we may consider Laplace's equation in two dimensions.

6
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The solutions, which are harnonic functions, may be enerated

by taking the real parts of aalytic functions. Although this

is not a true integral operator we will proceed to give some

typical examples of integral operators.

!Elliptic Equations in Two Variables

Consider the elliptic partial differential equation

a2u _ 2 ~ Cu
e(u] + a + a(x,y) a- + b(x,y) + c(x,y)u = 0 (I-2.1)

where a, b , and c are entire functions in a bicylinder

6(2) . Bergmans integral operator of the first kind [B.5,63

will associate in a one-to-one anner the solutions of this

equation with analytic functions of a complex variable. If

w tan.,fo'r-n variables accordinp to the equations

z = x + iy (I-2.2)

z = x - iy (I-2.3)

we obtain an equation of the form

E(U) = U* + A(z,z )U + B(zz )U + C(z,z )U = 0 .(I-2.4)

Tne solutions of this equation may be represented by

the integral operator

U(z,z ) =b 2 r = JfE(zz*,t) f(z [l-t 2 ]) dt (I-2.5)
x2 2(1-t2)1_ 

E(z,z ,t) is the generating function for Equation (I-2.4).

7
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It is given as

*
z

;(z,z ,t)- E(z,z ,t) expe A(zC )dC + n(Z)} (I-2.6)

0

wriere n(z) is an arbitrary analytic function of z

E(z,z ,t) satisfies the artial differential equation

( -t ) t t 1 + 2tz(E >> + D 3 ,,+ F ) = 0 . (I-2.7)z z zz1~ 

Vekua [V.1] has also obtained an integral operator rep-

resentation for solutions to quation (I-2.1) . The class of

real solutions which are analytic in 5(2) are given by

u(x,y) = Re {HO(zz)T(z) + H(z,Y,t)v(t)dt} (1-2.8)

where

H0(zz) s R(z,O;z,z) , (I-2.9)

H(z,z,t) - - R(t,O;z,z) + B(t,O) R(t,O;z,z) . (I-2.1

c(z) is an arbitrary holo-norphic function and z is the

restriction of z to real values of x and y

The function R(C,C ;z,z*) is a complex Riemann func-

tion for Equation (I-2.4). It is analytic for (C,C ) e 
and satisfies the equation

_ - a (AR) +(BR) CR = 0 (I-2.11)aca* - AR)- (R

and the conditions
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R(z,C* z*) = exp A(z,)d , (I-2.12)

z

R(Cz ;z,z ) = exp I B(9,z )dg (I-2.13)

z

The Generalized Biaxially Symetric Helmholtz Equation

For the following equation we consider solutions which

are of class C (2) in some neighborhood of the origin and are

even functions in x and in y.

[u = + 2 2v u = (p&,v>O) (I-2.14)
11V a,, - 2 x ax -Y -

Henrici (H.2] has given an integral representation for solu-

tions of this equation which was used by Gilbert and Howard

[G.H.6,7] to study the singularity structure of analytic

solutions. This is represented by the integral operator
(I-2.15)

u(x ) = f ax- _I ,(ka) (sq I) 2dl 
1+1

where

a = x + )( + . (I-2.16)

(I-2.17)
l6xA )

k2y2 (C ) (I-2.18)
16

= CIC=e, OiUST}) (119) ,

9
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with

a = i 2 (I-2.20)
(21) 2vr(Y)r(l)

2

2 is a confluent hypergeometric runction of two variables

(E.3, Vol. I, p. 225] defined by the double power series

(a) ()
t(a,p,y;xsy) M M xm n (I-2.21)

2 M~~~~m+n mn

Generalized Axially Symmetric Helmholtz Equation

This is a special case of the biaxially symmetric equa-

tion wnere = 0 . It is represented as

H u - a2u + a2u + 2u a + k2 = 0 (v x 0) * (I-2.22)

Gilbert and Howard [G.H.2] have given the following integral

operator representation for solutions to this equation:

-1 

* +1 ky[C- 1 (ka)(C- ) d' (I-2.23)

IC1=1
where

a x + iyC 1] (I-2.24)

2

(lvk 2~ r( + /Z (I-2.25)
2

The path of integration is the upper semicircle from +1

to -1 . J 1 is a Bessel function. Colton [C.1] has

10
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obtained uniqueness theorems for Equation (1-2.22) for the

case v < 0 . Previously, only the range of v 0 had

been known H.3],(P.l].

Generalized Biaxially Symmetric Potential Equation

Tnis is a special case of the Generalized Biaxially

Symmetric Helmholtz Equation where k = 0 . It is repre-

sented as

L7 ] a24 _ x a# a 2 . 2v 0 ov .(I-z.26)p 1 I a x2 + ~ ~x 'y b 0yI

The work of Gilbert G.6] gives the following integral opera-

tor for solutions of this equation:
1 1

I(xy) = W ofs 2l f f('T)[l+ ix c] [ C! ] d( (1-2.27)

fCI=e

where

Tr x2 _2 + ixy[C+ ] (I-2.28)

Generalized Axially Symmetric Potential iequation

This is a special case of both the generalized axially

symmetric Helmholtz equation and the generalized biaxially

symmetric potential equation. It is represented as

a2# a2. 21 a,
LL []1 -a - + - - 0 (I-2.29)

x2 2 y ay

Gilbert G.5] (see also Henrici [H.1,2]) has given the

following intqgral Qperator representation for solutions to

11
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this equation:

t M k = 4 r(2 ) £ (CC-1 2 d

where

s M (CIC=ei0; 0 t ITI .

The ElliDtic Operator Tp+.2

We will now consider the following class of

partial differentlwl equations:

£ +2(*] g L2. + A* 2 Ž± C 2
2p2I* 2 xa ~ xL x) 

elliptic

(I-2.32)

wnere A(r ) and C(r ) are analytic functions of r 2

Bergman(B.3,4,8] has given an operator wnich generates slu-

tions to this equation for p = 0,1. Gilbert and Howard

(G.H.1] have generalized this restult to include p 2 The

integral operator is ive by

Cx) = + f 1 (z)2JY dC E(rt)f(vl-t 2 1;C)dt, (I-2-33)
p t=-l

where f(vC) is an analytic function of p+l variables.

The auxiliary variable v is given by

v = N xv=Nx (I-2.34)I

where he analytic functions N (C) satisfy the relation,

N N = 0 .
IL ,u

(I-2.35)

A vector satisfying this relation is called isotropic. 

(I-2.30)

(I-2.31)

12
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is a product of regular contours Zkin the C k'plens which

do not pass through their respective origins. The function

E(r,t) is given by

E(r,t) = exp{- E ,frA dr} !f(r,t) , (I-2.36)

0

where the function H(r,t), tlfl is a solution of the equation

(1-t )H - t (t +l)H + rt + B (-2.37)
rt- r rr r *

where B is given by

B r A -+2 A r2 A 2 C (I-2.3B)
2 r 2 +C.(-.8

We,furthermore, impose the restriction that R /rt be con-r
tinuous at r = t = 0

Laplace's Equation in Three Variables

Laplace's Equation in three variables is a special case

of tne elliptic operator T +2 . The solutions of Laplace's

equation, wnich are harmonic functions, may be generated by

applying an integral perator to holomorphic functions in

two variables. Consider a holomorphic function with a Laurent

series representation
n

f(uC) = I a,,un (I-2.39)

n=0 m-n

in the region ((uC)l u < p and 1-6 s Id s 1+61 . Using

the same coefficients a we may represent a formal harmonic

function as
n a nZ

H(z) = i S 'g'T" rIP Mcos ) im (I-2.40)I = (n+m) n
n=0 m=-n

13
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* (w sin sin p sin cos , r os 8) . (I-2.41)

The functions Pnm are the Legendre functions, (E.3] . Thi's

formal harmonic function may be epresented in terms of the

holomorphic function, wnose Laurent coefficients are also

these ahm , by using the Bergman-Whittaker operator [B.3,4;

W.1]. The Bergman-Whittaker operator is defined as

z = B = F f(u,C) £ IdC = 1 * (I-2.42)

The auxiliary ariable u depends upon in the following

manner,

u = C ui(Clzi , i = 1,2,3 . (I-2.43)

The functions u i(C) are analytic. They are also the coM-

ponents of an isotropic vector and thus satisfy he relation

uiui = . (I-2.44)

A suitable choice for the components of the vector u.(C)

is

ul = 2 (c 2 -i) , (I-2.45)

2
U2= (C2+1) (1-2.46)

U= . (I-2.47)

Another choice fir the components of ui is obtained by

making the substitution

(I-2.48)C = ia
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This gives the following epressions for the 

u1 = i eiasin a, (I-2.49)

U2 = i ia co a (I-2.50)

u =eia (I-2.51)
3

To continue the function H(z) and remain on the same

branch, the path of integration should be deformed, if

necessary, to prevent a singularity from crossing over it.

The ffect of letting a pole cross over the path of inte-

gration corresponds to a jump in the value of H(z).

If the path of integration £ is regarded as fixed,

,the pace becomes separated nto regions called domains of

association separated by surfaces called surfaces of sara-

tion B.8, p491. Passing through a surface of separation

represents a pole crossing over the path of integration, and

the value of H(V) will jump from one branch to another.

Bergmann[(.2,8] has given an integral formula which

transforms a harmonic function H(;) into its B 3-asaociate.

We first define the C -associate of H(&) which is expressed
3

in terms of the variables

W =2 (zl + iZ 2 ) , (1-2.52)

2 1 +'2

w*= (z - iz ) ' (I-2.53)
2 1 2

and is equal to the restriction of H(;) to the (complex)

characteristic space

15
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zi 0. (I-2.54)

The C 3-associate is given by

Y.(w~w )= H(w-w*,-i(W4W*),2(ww ) (I-2.55)

The B3-asoociate is expressed in terms of the C 3-associate

by

f(uC) - 2fu/2 a {x(Cut 2 uCl(1_t)2 )}dt (1-256)

0

The B associate resulting from the application of Equations3-
(I-2*55) and (I-2.56) to H(z) is called the normalized

B3-associate, and is the function given by Equation (I-2.39).

We may add to it a null-associate and the resulting holo-

morDhic function will be mapped by the Bergmann-Whitaker

operator into the same harmonic function. The null-associates

are all mapped oto the zero harmonic function and are given

by

n(u,C) = nCk-l (1-2.57)

n=O k>n

The C3-associates are holomorphic functions of two complex

variables wich may be used to generate harmonic functions.

This is done by applyn-g successively the operators defined

by Equations (I-2.56) and (I-2.t42).

Bergmann Ml.l,7.8J has obtained a result regarding the

singularities of a harmonic function when f(u,C)C 1 is a

16
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rational function of u and C . In this case we ay OX-

press the harmonic function as follows

H(z) = 1 f ( 2-f j dC (1-2.58)

where p and q are polynomials. Defining Q(;,C) as

QQZ-00 E q(u(z.C),C) , (I-2.59)

it is clearly seen that H(z) becomes singular for those

values of z which satisfy simultaneously the equations

Q(ZC) = o (I-2.60)

ac Q(zC) = O . (I-2.61)

Gilbert G.2,3] has obtained a more general result of

this type. It is as follows:

Theorem: Let the defining function for the set of

singularities of f(u,C)C 1 be a global definina function

in c2 . Then if n(u,C) s(zC) = 0 is such a defining

function we have that H(z) = B 3f is regular for all oints

z , which may be reached by continuation along a curve r

starting at some point of definition z , provided z (and

hence the curve r) does not lie on the set

= U%({j S(UC)=o} n {tJ1 C(,0=0) . (I-2.62)

We shall refer to the set of possible singularities 

as a singularity set. If the function f(u,C)C 1 is a ra-

tional function, every point of the singularity set 6 is

17
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a singularity. Whether this is so for any f(u,) 1 is an

open question. The singularity set is in general a four-

3dimensional manifold in the six-dimensional space C3 Its

intersection with the three-dimensional real space a3 is a

one-dimensional curve.

Kreyszig K.2] has given several examples of the func-

tion h(uC) along with the resulting set of singularities

of H( = B3f in a 3 .

If h(u,C) is of the form

:2
h(u,C) = a + (c+u)C + kC, (I-2.63)

then H is singular at a point, if c is real, or on a

circle otherwise. The point or the center of the circl is

given by

x = -Re c , (I-2.64)

2 = -Im (a+k) , (1-2.65)

x3 = Re (a-k) . (I-2.66)

The components of a vector b normal to the plane of the

circle are given by

b = Im c , (I-2.67)

b2 = -Re (a+k) , (I-2.68)

b3 = I Ik-a) ,

18

(I-2.69)
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and the radius of the circle is given by

R = b . (I-2.70)

Ir h(u,C) is of the form

h(u,C) = C(1+C)u ,

then H(;) is singular along tne

If h(u, ) is of the form

h(uC) = (u+C2 ) 

then H(x ) is singular along two plane curves. One of

thei lies in the x,x 3-plane and

form

X34 + (x 1
2 - 18x 1 - 27)x 3 2

can be represented in the

- 16x13 = 0 ;

the other lies in the x, x2 -plane and can be represented

in the form

X4 + (2 +8X-7)x2 3 =x2 x1 +1 1 27x2 + 16x1 = . (I-2.74)

If h(u,C) is of the form

h(u,C) = 1 + U + r2 + C3 (f2.75)

then H(x) is singular on the line

x 2 =0 (I-2.76)

and

x = -2 ,

(1-2.71)

xl- and x axes.

(I-2.72)

(I-2.73)

( I-2, 77 )
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on te two curves in the acl., x3-plane

x1 = 

and

(X +1)(x+3) + 2(X 3) = 0 ,
1 1 3 ~~1 

and on the curve given by the following pair of equations,

(x 1-3)[(Xl+l)(X 1 +3) 2+ (x 1 3)x 3
2 - 12x,2

= ,

(x -3)(x 12+x2 -9) + x22(x 1-5) = .

2 j X2'2(X22+X32)

(I-2.80)

(I-2.81)

We shall consider the special case where the equation

h(u,C) = 0 (I-2.82)

may be solved for u . This will be the case if

a h(u, C) 0 
au

(I-2.83)

Aftvr solving for u we may express Equation (I-2.82) in

terms of an analytic function (C) as

u + (C) = 0 . (I-2.84)

We henceforth define the functions s(zC) and h(u,C)

by

S(zC) = h(uC) UC + w(C) (I-2.85)

Gilbert [G.7, p.70] has demonstrated the following

theorem regarding the singularities of a harmonic function.

(1-2.78)

(I-2.79)

20
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Theorem: Let H(z) be a harmonic function given 

H(z) = B3f where the singularitigs of £(uc)C 1have a

global representation, h(u,C) su + (C) = 0 Then the

singularity set e is a developable surface in C3

In the special case where the components u are given

by Equations (I-2.45) - (1-2.47) the singularity set is

given by the par&etric Equations (0;.7, p.65]

Z= (p/2)[C- 1/C] + - [C+ /C]V', (I-2.86)

Z2 = (ip/2)(C+ 1/'] + i(w - 2 /C]'), (I-2.87)

Z3 = A . (I-2.88)

3. The Edge of Regression

If is not of the form

2
Cp = a + bC + c, (I-3.1)

Equations (I-2. 86) - (I-2. 88), representing the singularity

set 6 , may be put into the form

Zi = r. C+ PY '0 ' (P- C) E C (I-3.2)

A complex surface which may be represented by an equation of

this form is called a tangent surface. The complex curve

represented by

Z1 = Y(C), C f C,

21
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is alled the edge of regression of the tangent surface.

These are natural extensions of definitions from real geom-

etry. Equations (I-2.86) - (I-2.88) may be put into the

form represented by quation (I-3.2) by making the substi-

tution

I = -' + C + . (I-3.4)

This gives

= - Cc,+ 1 #2 + 1 '(C2_ . (I-3.5)

z 'D 21 2 i 2I--
=2 icp - iC + - i# (C2+1) + (C2+1) , (I-3.6)

22

Z + CCPI+ Po, (1-3.7)3

It follows that the edge of regression is given by

z C + 2 (C 21) 1 (I-3.8)

Z= -iCo + #(c 2+1) , (I-3.9)
2 ~~~2

z = -0 + o (I-3.10)
3

The derivative with respect to C of the position vector z

can be represented coordinate-wise as

Z'= uio, (1-3.11)

where ui is given by Equations (I-2.45) - (I-2.47). We

shall consider, however, the more general case where u

is taken to be any analytic isotropic vector.

22
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II. THE ETRIC TENSOR FOR THE EDGE OF REGRESSION

1. The Six-Dimensional Real Space a6

In addition to regarding the edge of regression as a

complex curve over C3 we may also regard it as a two-

dimensional manifold over * The coordinates of a point

(lz2 z3) in C3 shall be denoted in %6 byz1,z2,z3) nb
(x19x2 ox3 #yly 2 #y3) . A point on the edge of regression

= V + IV2 (It-l.l)

shall have the coordinates (vl,v2) on the corresponding

surface.

2. The Metric Tensor in 6

The edge of regression is a two-dimensional surface in

a6 whose metric tensor is given by

i. aoxi a 1 ay,
gap dva , + ova p e (II-2.1)

We are following the convention of summing upon repeated

indices. A latin index shall take on the values 1,2, and 3;

while a greek index shall take on the values 1 and 2. Using

equation (I-3.11) to calculate the partial derivatives

axI/va and byi/6va and substituting into Equation (II-2.1)

gives the following expression for the metric tensor,

gap Eui9 126 p . (IT-2.2)

23
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Equation (11-2.2) follows solely from the assumDtion that

the functions ui are analytic. Tne assumption that u-

is an isotropic vector has not been used. (The derivation

of this result is discussed further in Appendix A.)

We see that the metric tensor s of the genqral form

gap = (v 1 v )8 C (II-2.3)

where

uit | 12I-24

i

Whenever this is the case we say that the surface parameters

are isothermal, E.1, p.93]. The coordinate curves for an

orthogonal system. When they are spaced according to equal

infinitesimal increments in the values of v1 and v2 they

divide the surface into a network of small squares. The

size of these squares may vary as one moves about the surface.

Let us proceed to evaluate the metric tensor when ui

is given by Equations (I-2.45) - (I-2.47).

Uiui = 4 (c -l)( 2-l) + (2+1)(+) +

= I (C2Z2 _ 2 _ .2 + 1+ C + + 1 

= 1 (2C2C + 4UZ + 2) = 2(C + 1) * (II-2.5)
42

In this case the expression for the metric tenspr becomes

Bg = ( C 2 +1)2 1.112 6 (II-2.6)

24
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3. The Assumption that a Vector is Isotropic

For future reference we shall derive a number of equations

that follow from the assumption that a vector N is isotropic.

Taking the real part of the equation

NiNi = 0 (II-3.1)

gives

RNi RNi -IN INi = . (II-3.2)

Taking the imaginary part of Equation (II-3.1) gives

RNiINi = 0 .

Multiplying Ni by its complex conjugate gives

NiNi = RNiRNi + ii

Using Equation (II-3.2) we obtain

RN RN = IN I2

i i 2 i

and

IN IN = 1 IN 12

Differentiating Equation (II-3.1) gives

N N I=0 .
i i

Taking the real part of this equation yields

RNiRN -INiINi' =0 ;

(II-3.3)

(II-3.4)

(II-3.5)

(II-3.6)

(II-3.7)

25
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whereas, taking the iaginary part yields

RN IN ' + IN RN '
i i i i

= . (II-3.9)

Let us consider the real and imaginary parts of N I'.

One has

(II-3.10)
R(Nii I) = RNiRNi +IN i

and

(11-3.11)I(N jr, ) = -RNiINiI + I iRNiI

Using Equations (II-3.8) and (II-3.10)

INR I 1 R( N'RNiR~i = I 3iIN = 2 iR(Nii 't

and from Equations (II-3.9) and (II-3.11)

RNiIN' = .INRNj' = - 2 I(N T')

(II-3.12)

(II-3.13)

4. The Metric Tensor in 3

Let us consider the projection of the edge of regression

onto the real space * . This time it is necessary to use

the assumption that u is an isotropic vector in order to

obtain a result wnich closely resembles Equation (II-2.2).

The metric tensor in 3 is given by

axi axi
gap avar avP(I-41)

We will denote the right hand side of Equation (I-3.11) by

Ni that is

26



NRL REPORT 7651

pi U s uN . (1 -4.2)

Substituting the partial derivatives ax1 /bv as de-

termined from Equation (II-4.2) into Equation (II-4.1) givs

the following expression for the components of the metric

tensor

g91 IRN i s (II-4.3)

12 = g 2 1 = RN INi (II-4.4)

922= i iINi (II-4.5)

At this point by means of Equations (-3.3), (II-3.5) and

(II-3.6) we introduce the assumption that ui is isotropic.

This gives by (II-3.3), (II-3.5), and (II-3.6) that

gap =2INjI 2 . (II-4.6)

Substituting for Ni tne expression of Equation (II-4.2)

gives the following result for the metric tensor

gap= 7 I|u&'1 Cap (II-4.7)
i

(The derivation of this result is discussed further in

Appendix B.)

Equation (II-4.7) is of the form of Equation (II-2.3)

where is given by

k =I| . (II-4.8)

i
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It follows that v1 and v are isothermal parameters for

the surface under consideration. In the special case where

Ui is given by quations (I-Z.45) - (I-2.47), i.e. the

Bergman formulation, the metric tensor is given by

g = 4 (ICI 2+1)2 I 11,2 6 a (II-4.9)

5. The Metric Tensor i I3

Similarly, we may consider the pojection of the edge

of regression onto the imaginary space I The metric

tensor for I is given by

ay aj
gap Ev= a ar (II-5.1)

Substituting the prtial derivatives byi/ava as determined

from Equation (II-4.2) into Equation (II-5.1) gives the fol-

lowing result for the metric tensor:

g11 INi Ni , (II-5.2)

12 = g2 1 1RN* i (II-5.3)

g22 RNRN (II-5.4)

Using Equations (II-3.3), (II-3.5), and (II-3.6) gives:

g9a1 INj126 6(" )
gcD : I~l2 ap .(II-5.5)

Be see that in the case of the imaginary space we obtain

the same metric tensor as for the real space. (The derivation

of this result is discussed further in Appendix C.)
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III. CHARACTERIZING THE SINGULARITY SETS

1. The Efta of Regresion Is an lsojrvuj c e

Considering the points on the edge of regression as

points in the complex space C3 , the length of an infini-

tesimal line segment is given by

dz dz = Iz '(dC)2
i i I 

(ITI-1.1)

and substituting Equation (II-4.2) into this gives

dzidzi = uiuw IWdC)

Furthermore, since

uiui 0

(III-1.2)

(III-1.3)

it rolles that

dz dz = 0 . (III-1.4)

A complex curve that satisfies this equation is called an

isotropic curve K.3, p.18 61. In particular the edge or

regression represented by Equatigns (I-3.8), (I-3.9) and

(I-3.10) is an isotropic curve. From the following lemma.

we have that any isotropic analytic curve is the edge or

regression or some singularity set.

Lemma: A isotropic analytic curve mnay be expressed

using Euations (I-3.8) - (I-3.10) 
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Proof: Eq.ation (II-1.4) may be written

z z dC = 0 (III-1.5)

It follows tnat

(Z{)2 + (Z,)2 + (Z)2 0
1 ~2 3 (III-1.6)

Using Equation (III-1.6) define the parameter as follows,

z{-iz' 2 dLT
e' Z3 zI+iz'

3 1 2
(III-1.7)

A change of parameter given by

C= e (III-1.8)

leaves the form of the second and third members of Equation

(III-1.7) invariant. Equation (III-1.7) can also be written

as

zI - iz = z'-i 2 3 . (III-1.9)

tz '+ i zf =-z . (III-1.10)

(III-1.11)

and solving Equations (III-1.9) - (111-1.11) simultaneously

for z z' and z' yields1 2 ~3

= 1

2 -2

A (III-1.12)

(II-1.13)D

Defining p as

z3

p a, e9
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z$ = 4P A

Integrating Equations (TII-1.12) - (III-1.14) gives

Z- - iP + p(t2_1) + l , 
12

.Z2 = J1 -i;( + i 2 +1) + ic2 ,

z3 = I + 3+ 0

(III-1.15)

(III-1.16)

(III-1.17)

where cl , 2 , and c3 are arbitrary constants of inte-

gration. p(t) may be expressed in terms of a function 

as
1 2 1 2

P= (P+ ( _l)c - f ( +1)c2 + to3 (III-1.18)

Substituting Equation (III-1.18) into Equations(III-1.l5) -

(III-1-.17) will give equations which are identical to Equa-

tions (1-3.8) - (1.3.10).

2. Minimal Surfaces Characterize the Singularity Sets

Theorem: A complex curve in C3 is an isotropic ana-

lytic curve if and only if its projection onto the real space

Q3 is a minimal surface. Two isotropic analytic curves

with the same projection in g3 differ oy b an imaginary-

translation.

Prof: First we will assume that we have an isotropic

analytic curve in C3 represented by

Zk = k (C) (III-2.1)

where

31
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dz dz = 0 .k k
(III-2.2)

z k can be expressed as

, axk iXk
Zk al W ¢ (III-2.3)

Substituting this expression for (zk into Equation (III-1.6)

yields

k _iax k a _ i k) = (III-2.4)

Expanding the left hand side we obtain

bxk axk axk axk axk axk
-I- - -- - -2=0 . (III-2.5)

ov a;l av2 av2 avi bV2

Substituting Equation (II-4.1) into Equation (III-2.5) and

setting the real and imaginary parts individually equal to

zero gives

(III-2.6)
911 - g2 2 = 0 '

(III-2.7)
912 = 0 .

Wbe see that v 1 and v2 are isothermal parameters for the

surface in . Also, the surface is represented by the

harmonic functions

x = (Vlv 2) . (III-2.8)

A surface expressed using isothermal parameters is a minimal

surface if and only if each coordinate function x(vl,v2)

is a harmonic function [0.1, p.1099J. It follows that the

surface under consideration is a minimal surface.

Let us now assume that we are given a minimal surface
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3
in f . Any minimal surface ay be represented by Equation

(I(I-2.8) where x (v 1
9 v 2 ) is harmonic and v and V2

k
are isothermal parameters. Now introduce yk(vv 2) as the

harmonic functions conjugate to the xk * The k are de-

terminsd to within arbitrary constants. An analytic curve

in C3 whose projection onto 3 is the given minimal

surface is given by

Zk = + iyk . (III-2.9)

Let us proceed to calculate dzkdzk . Using the assumption

that k and k are conjugate harmonic functions and re-

peating the calculations represented by Equations (III-1.2)

and (III-2,3) - (III-2.5) e obtain

4Xk axk aXk BXk axk xk
dzkdzk a 1 - 2 k - 2i 1 -(III-2.10)

Subvt Equation (11210)at

Substituting Equation (CII-L1.1) into t~his equation gives

dzkdzk = (g11-g2 2 ) - 2ig12 (III-2.11)

Since we have isothermal parameters we may use Equations

(III-2.6) and (III-2.7). This gives:

dzkdz =Q . (III-2.12)

Therefore our analytic curve is also an isotropic curve.

This completes the proof.

The results' of this and the previous section lead us to

the following
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Theorem: Assume t(C) is not.of the form ac 2+ bC + c

Then a singularity set has an edge of regression which is an

isotropic curve in C3 and its projection onto i3 Is a

minimal surface. ny two singularity sets that determine in

this way the same minimal surface dilfer only by an imaginary

translation. An minimal surface will characterize in this

way singularity set.

3. The Cone as a Special Case

We will now consider the case where is of the form

= aC2 + b + c . (III-3.1)

We may perform the following change of parameter on quations

(I-2.86) - (I-2.88):

= aC -rC +Cm' 0 (III-3.2)

We will then have

1 2
£ = -a + a -1), (III-3.3)

Z2 = i~c~a + 2 2

Z3 = -b + . (III-3.5)

These equations are of the form:

zb = Vi + i (III-3.6)

and represent a family of cones which differ only in the

location of their vertices. The vertex of a cone is given

34
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by

vt = - a, (II-3.7)

V2 = i(c+a) , (III-3.8)

v3 = b . (III-3.9)

The family of isotropic vectors ui determine the orienta-

tions of the generators of a cone. de see that in this case

the singularity set may be characterize by a point, the

vertex of the cone.
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IV. TE EXTRINSIC GEOMETRY OF THE EDGE O1 RGRESSION

1. The Geometry of the Projections onto 3 and I3

The extrinsic geometry of a surface may be specified

by its second fundamental form w hich is dbfined by

tne formula

b = (a2X i 96Y vbi )XJ 62xj (IV-1.1)

where is a unit vec-tor normal to the surface. Tne

secondi fundamental form may be interpreted geometrically

by the fact that the curvature of a geodesic passing

through a point in the direction of a unit surface vector

11 is given by the formula

X = as31nXp. (IV-1.2)ap3

The second fundamenta) forms and also the unit normal vectors

for tne projections of the edge of regression onto the spaces

R3 and I are calculated in Appendices D, Ej and F.

For both R3 and I3 the components Yi of the unit

normal are the same, and are as follows,

1 = 2v 2 (IV-1.3)
1+ (V ) 

2 -2v2
2 12 2 2 (IV-1.4)

l+(v ) +(v )

3 =1;(v1 2 (V22
l=(v ) 2( (IV-1.5)
l+(v )+(v)
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For 93 it i found that the components of the second

fundamental form are

1 2 P (IV-1.6)

b b Q (IV-1.7)
J12 21

where P and Q are the real and imaginary parts of cp

For I3 the second fundamental form has the components

b = A, (IV-1.8)

b =b =P (IV-l.9)
12 21

A minimal surface may be defined as a surface with its mean

curvature M identically equal to zero,

M = g b Be- 0 (IV-l.10)

Since the parameters are isothermal one may express tis

condition as

b - 0. (IV.-l.ll)
aa

Obseqrving that the set of Equations (IV-1.6) and (IV-1.7)

and also the set of Equations (IV-1.8) and (IV-1.9) satisfy

Equation (IV-1.l1), we have an additional demonstration that

the surfaces in R3 and I3 are minimal surfaces.

In Appendix G we calculate the Gaussian curvature for

the supfaces in R3 and I3 The result, which is the

same in both cases, is given by the formula

-4 (ulI - - I -I
(iuiU j u X-uujuj)
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This expression for the Gaussian curvature is nowhere posi

tive. J'valuating Equation (IV-1.12) in the special case

wnere u1 is given by Equations (I-2.45) - (I-2.47), we

obtain

K- 4[(2c+1) 2 (ceC1) (CZ+l)

-32[ 4 (2CC+l) -CC]
= , = 2 ~~ ~~16 . (IV-1.13)

(GG+1)44S'¢"I (12h+1) 41P I72

At a point determined by the parameters va the sur-

faces in 43 and I3 have the same normal vi Since

they are minimal surfaces with the same Gaussian curvature,

they have the same local shape. It is saddlq7iike with

principal curvatures of the same magnitude. By comparing

their second fundamental forms, we see that the orientations

of the two surface elements differ by forty-five degrees as

is shown n the diagram on page 44.

2. Tne Geometry of the E-dge of Regression in 6

In Appendices H, I, and J we calculate the Gaussian

curvature for the edge of regression in * The.result

is given by the formula

K iu' J ui ' ~j) (IV-2.1)

(u Uk) 3 tv''

This expression for the Gaussian curvature is nowhere posi-

tive. It is one-half of the result obtained for the pro-

jections of the edge of rgression onto R3 and I3 ; hence,
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V1-curve

Surface element in 3

Surf ace element in I3

Diagram of surface elements in 3 and 13 for the point

with surface coordinates v 
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for R6 one has

K= -8 (IV-2.2)

In Appendix K we calculate the curvature X of a geo-

desic passing through a point on the edge of regression in

R , in the direction of te unit surface vector la , as

= -2(UiU - U UU ) ,-2 (IV-2.3)
Ukuk) "

where X is given by Equation (II-2.4). 'e see that the
I~~~~~~~~~~~~

curvature X is independent of the direction 11 . A

point with this property is called an umbilical point.

An isolated umbilical point on a surface in is a

point of positive Gaussian curvature. IS a surface in 3

is not a plane, and if every point is an umbilical point,

then it is a sphere. This is not so, however, for a surface

in RN with N > 3 . The edge o repression, which is a

surface in 6 , gives us an example.

Tneorem: For the surface in B6 determined a Equa-

tions (1-3.8) - (I-3.10) the Gaussian curvature is nowhere

positive and every point is an umbilical point.

In order to vnderstand this we refer to the diagram on

page 44. The curvature of a geodesic in B6 is determined

by tne Contributions from 3 and I3 . For I = 11 there

is a aximum contribution from 3 and no contribution from

I3 . For o = we have the reverse situation. For an
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n located at some Intermediate osition between X and 

the constant curvature in 26 results from a composition of

the curvatures in 43 and I3 .



R. M. BROWN

V. EXAMPLES OF MINIMAL SURFACES

1. To Find Given a Minimal Surface

Suppose we are given a minimal surface which is repre-

sented by parametric equations in the form

xi = xj l,w2 ) . (V-4.1)

The three components of a unit normal 4 to this urfaCe

are surface scalars. In terms of the isothermal parameters

v1 and v2 the components 4i are given by Equations

(IV-1.3) - (IV-1.5). We may use the equations

vi(wl,w2) = + vi(vlv2) (V-1.2)

to find the functions wa(vl,v2) . From the second fundamental

form in the wcoordinate system, by , we may find the

second fundamental form in the v-coordinate system, b ,

by using the equations

aw * awy
baa = a b 68Y . (V-1.3)

Theorems Given a minimal surface whose second fundamental form

has components b with respect to isothermal arameters, let

' = b - bl2 (V-1.4)

Then, there are harmonic functions with their singularity sets

characterized by the given minimal surface. Moreover, the most

Reneral harmonlc function of this kind can be written in the form

H(Z) B3 ] + o(Z) (V-1.5)
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where H0(z) is an arbitrary entire harmoni. function.

2. The Catenoid

As an example we will consider a catenoid as the given

minimal surface. We may represent this surface with the

set of equations

21
Xl =sin w cosh w, (V-2.1)

= wl (V-2. 2)

2 = cos w2 cosh wl (V-2.3)

Taking the partial derivatiy'slf these equations with re-

spect to wa and substituting the resulting expressions

into Equation (II-4.1) gives the expression for the metric

tensor, namely

p = (osh w )2 6 . (V-2.4)

Since this is of the form of quation (-2.3) we have iso-

thermal parameters with x given by

X = cosh 2 w1 . (V-2.5)

In Appendix L we find that the components of the unit vector

normal to the surface are

1 sin w2
= o shw 12 (V-?.6)

cosh w

2 _
V = tanh w (V-2.7)
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V = I 1CS (V-2,8)
cosh w

and that the components of the second fundamental form are

given by

b b ' (V-2.9)
11 22

b* =b* (V-2.10)
12 21

The catenoid may also be pararneterized in terms of the iso-

thermal parameters v . In tnis case the components of the

unit normal vector are given by Equations (IV-l.3 - (IV-1.5).

The relationship between the wa and the va parameteriza-

tions is given by Equation (V-1.2) from which we have

V1L( 1, w2 V 1(1 v2

212 = 2 ~~~~~~~(V-2.11)
%13(Wl RW2) v3(vlPV2)

V2(w1 W2) V2 (vl,v) (V-2.12)

Substituting Equations (V-2.6) - (V-2.8) and IV-1.3)

(IV-1.5) into Equations (V-2.11) and (V-2.12) gives

tan 2= V-2.13)

and

1+C

Equation (V-2.14) may be written as

tan iwl = (V-2.15)
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We may express the parameters wa

= W1 + iw2 .

using the complex variable

(V-2.16)

Substituting Equations (V-2.13) and (V-2.15) into the

identity

tan i = tan (Ow1 -w 2 ) =
tan iw'-tan 2

l+tan iw tan 

yields

(C-0) _ r.
1+Cr 1- CT 

1 + DC +)
1- (CT)`

tan i =

-2 2- Z

a+ 2 -c 2_( c) 2

-2
= -2C(14+C ) _ -2C,

(1-Cm )(1 )- l_C2 

which in standard quadratic form, becomes

itan i)C2 - 2C - tan i = .

The solutions to this equation are given by:

=1 + A/2+ta n iTI 1 sec ili
tan il tan iTn

1 + C+11+ os 111 =Cos i ±l1
in in sin il

qos 1

'We may simplify the two solutions as follows:

45
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(V-2.18)

(V-2.19)

(V-2.20)
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cot 2 in (V-2.21)
2

C = an 2il (V-2.22 )

Only Equation (V-2.21) checks with Equation (V-1.2). The

other solution is therefore extraneous. Solving Equation

(V-2.21) for 1 , we have

= -2i cot 1 * (V-2.23)

Differentiating Equation (V-2.23) with respect to and

v2 gives

am _ 2i (V-2.24)

lW +C 2

and

am -2
4 =-2 (V-2.25)

a2 J+2

These Equations can be written as

al v= 2 (+C (V-2.26)

and

- (2\ (V-2.27)
= - 2~~ ~~

av al +C

Substituting Equations (V-2.9), (.V-2.l0), (V-2.26) and (V-2.27)

into Equation (V-1.3) ives the second fundamental form in

the -coordinate system, name2v
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1 1 2 2 (A+L 7 ) V-2.28)

and

b = b = -I 4 ) (V-2.29)

The derivation of this result is discussed further in Appen-

dix L. Using Equation (V-1.4).we obtain the function c

modulo a quadratic by

IN"= 4 (V-2.30)
('+c )

3. The Right Helicoid

Another example of a minimal surface is the right

helicoid. It may be represented by the set of parametric

equations

X = wi ls w2 ,( -3.1 )

X = w 1 sin w2 , (V-3.2)

x3 = W2 . (V-3.3)

Taking the partial derivatives of these equations with

respect to wa and substituting the resultirng expressions

into Equation (II-4.1.) gives the expression for the metric

tensor, namely

(V-3 . 4 )=1 1 ,
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12 '21 (V-3.5)

= (w1 2 + k2 (V-3.6)

In Appendix M we find that the components of the unit vector

normal to the surface are given y

= sinw2 ' (V-3.7)
((wN +k 

2 1 2 2 IT! (V-3.8)
((wN +k 

and

1
3 W

V 1)2 21/2 ' (V-3.9)
((wN +k 

and that the components of the second fundamental form are

given by

b =b = (V-3.10)
11 22

and 1

b =b*1 = -k (w ) + k2 (V-3.UL)
12 21 (i 2 k

We may also parameterize the right helicoid in terms of the

isothermal parameters va . For this parameterization the

components of tne unit normal vector are given by Equations

(IV-1.3) - (IV-1.5). The relationship between the wa and

the va barameterizations is gven by Equation (V-1.2) from

which we obtain
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V3W12 V31V 2

1 1 2 , (V-3.12)
V (w w ) V (v v

and

2 ( 2 .= (V-3.13)v (w w ) V (v v

Substituting E'quations (IV-1.3) - (IV-1.5) and (V-3.7) -

(V-3.9) into Equations (V-2.12) and (v-2.13) gives

w = 1-(v 1)2-(v 2 )2 (V-3.1)

k sin 2v

and

1 1)2 2 2w 1-(v ) (v
kw005 W 2 2 (V-3.15)k cos w 2v

These equations can be expressed as

2v lw = k sin W2 [1 - (vl) 2 _ (v 2 ) 2 J (V-3.16)

and

2v2wl = k cos w2 L, - ()2 _ (v2)2] (V-3.17)

Eliminating w2 we have

4(w1) 2 [I)2+ ( 2 ) 2j = k2 [1 (v 1 )2 _ (2) 2 ]. (V-3.18)

Solving for w1 gives

1 [(v)2( 2 2(V31)2Uvl 2 (2)2J 1 /2 (V-3.19)

Eliminating wl fron Equations (V-3.16) and (V-3.17) gives
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(V-3.20)tan w2 - 2 
V2

or inverting this

2 -1v'w =t an -

V2
(V-3.21)

Taking the martial derivative of Equation (V-3.19) with re-

soect to V .and v gives

awl -kvl[l+(Vl ) 2i(V2)2]

aj = '2[ (vl)2+(v2)2]3/2

1 2 1 2 (2 2
aw_ - kv [l+(v ) +(v ) I
av2 1[(v )2+(V )23/2

(V-3.22)

(V-3.23)

Performing these operations on Equation (V-3.21) gives

aw _ 1 { A ( V2

I _- -V 2) =2 -1V)2+(v2 )2 9
1 + ( v

- [ 2] 222a7 1 (v ) Cv) (V) + (v)

(V-3.24)

(V-3.25)

Substituting Equations (V-3.19), (V-3.22) - (V-3.25), (V-3.10.)

and (V-3.11) into Equation (V-1.3) gives the following expres-

sion for the second fundamental form, in the vacoordinate

system,

and

and
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2kv v

L(v 1 ) 2 +(V 2 )2]2

b12 1 b
k[(v 2 ) 2 _ (V1)2J

[(vl )2+(v2)2'2 
(V-3.27)

(Te derivation of, this result is discussed further in Appen-

dix M.) Using quation (V-1.4) we obtain

X = k [(V1 )2 + (v2)2]-{2v1v2 + [l)2 (v2)2] i

12 1 2 2ik(v ) _2v)((iv ) ]

1 2 2_ ik[ (v .)-.(v ) 
E 1 -iv2 2 1 22

ik

(vl+iv2) 

Using Equation (II-1.1) we mnay express this as

m ik
X = 2 X

= -b
22

51
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VI. FURTHER 3O'ISIDERATIONS

3
It has been shown that a minimal surface in ? will

determine a singularity set. However, a inimal surface

will be determined by a boundary curve. This is known as

Plateau's problem. It often but not always has a unique

solution. When it does have a unique solution, a closed

curve in R3 is sufficient to determine the singularity

set in C3 . Tnis -nay also be a fruitful way in which to

characterize the singularity sets.

The singularity set is a four-dimensional manifold in

the six-dimensional space C3 . It will, in general, inter-

sect the real space %3 in a one-dimensional curve. In other

words the singularity set for a harmonic function on R3 is

in eneral a curve. One area for future study is to cate-

gorize these curves in .

Boundary curves of the minimal surfaces are sufficirnt

to determine the singularity sets. This raises the question

93
as to whether a singularity set in P , which is also a

curve, will determine the singularity set in C3

Another possibility for further developments is the ex-

tension of the study of the geometry of singularities to

harmonic functions in four d ..iensions. ilbert [A.2,4] has

introduced an operator which is a four dimensional analogue

of the Bergman-Whittaker operator. It maps holomorphic

functions of three complex variables f(T,T,() into harmonic

functions n four variables. It is expressed as
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H () = - 1 dnf (Tl, g)
,n 

= 1,2,3,-4 

N N = 0 .

h(Tjg) s = 0

(VI-l.l)

(VI-1.2)

(VI-1.3)

(VI-1.4)

be a global defining function in C3 for the set of singu-

larities of f(T,j,g)- 1C 1, then H(z) is rgular for all

points z which do not lie on the set

6- U, {j s=o} n {z s=o} n {zl s=o} * (VI-.)

If we consider the case where the euation

h( TpXg) = 0 (VI-1.6)

may be solved for T-1 we may express S(zTPt,) in the form

S(z:,l,n = gr(E,,nI,) + c(ng) (VI-1.7)

where p is a holomorphic function of I and . A

possibility for the components of the isotropic vector N

are

1, = 1 
11

N2 = i ( 

(VI-1. 8)

(VI-1.9)

Let

53
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(VI-1. 10)N - - '3 'TIn'

4 i + ) (VI-1.11)

The singularity set will then be given by the

equations

2i~lni)+(Xi)X(l_2)M +(1- g)0
z~~~~~~~I =

1, -2 ( +9) 9

2i ( 1-194t- (+9) t+(l+n2 )t t,+(l+g2) )CP

2 -2i (+9)

z = i (-01+101_____

3 _ N+g)

parametric

('JI-1. 12x)

(VI-1.13)

( VI-1 .14 )

(pw, V,~ E C (VI-1.15)

B. L. Tong in her dissertation T.2] has introduced

an operator which aps holomorphic functions in two variables

onto solutions to the following elliptic partial differential

equation,

+2*
+ F(Z)* = 0 i = 1,2,3 (vI-1.16)

wnere F(z) is an entire function in C3 . When this equa-

tion rduces to Laplace's equation, Tjong's operator reduces

to the Bergman-Whittaker operator. This suggests the possi-

bility of generalizing the theory of sinvularities from

harmonic functions to solutions of tne above elliptic partial

Z4 = I.L,
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differential equation.

A similar development may be ossible for the four-

dimensional case since olton and Gilbert C.S.1] nve in-

troduced an operator wnich is a four dimensional analogue

of Tong's operator.
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APPiZNDIX A

The Metric Tensor in R

As an alternative notation we shall denote the six com-

ponents of a Dosition vector in 6 by x'A where i=l,2- 

and A or any other capitalized roman index takes on either

of the two values denoted by R and I . These components

are defined as

xiR = Xi (A-i)

ii
X = y. (A-2)

For their partial derivatives we shall use the notation

Xa = aiA (A-3)

From the real and imaginary parts of Equation (I-3.11) we

have

~iR(A1xi = Rui ,P ( A-4)

xi = I " . ( A-5)
1 Rui 

R and I are used to denote te real and imaginary parts of

an expression. Applying the Cauchy-Riemann equations to

equations (A- 4 ) and (A-5) ives

x2i = Ruiu , (A-6)

xiR = IUiX CP . (A-7)
2 i
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2quations (A-4) - (A-7) may be expressed as

-I

R A
Ad

aiC "I
0 (A-8)

As one moves along a row i the above atrix the index a

takes on the values 1 and 2 , and as one moves down acol-

turn the index A takes on the values R and I .

The metric tensor for the edge of regression in 6 is

given by

g = XiAX IA (A-9)

Substituting Equation (A-8) into Equation (A-9) gives

R

-I
I i (A-10)

After performing the indicated matrix multiplication we nave

[R2 (Uicp )+I2 ( UiC )

g a p.0 . (A-il)

This result simplifies to quation (II-2.2)

57
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APPENDIX B

Tne Metric Tensor in 3

The metric tensor for tne edge of regression in Rs3 ..1

given by

g = xiRR (3-

Expressing those components of Equation (A-8) where A =

we have

Xa= ER -I] ui * (B-2)
Ca ai

Using the notation indicated in Equation (II-4.2) we have

xi = [R -I] N. (Be)

Substituting this equation into quation (B-1) yields

R RNiRN -RN iIN 1
=jNi [R -I] Ni = (-4)

-Ia RNiINi IN IN

_ap

Using quations (II-3.3), (II-3.5), and (II-3.6) we intro-

duce the assumption that ui is isotropic. Equation (II-4.6)

follows.
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APPENDIX C

The Metric Tensor in I3

The metric tensor for the edge of regression in

g = iixii
p ax P

I3 is

(C-X)

Expressing those components of Equation (A-8) where A = I

we have

xii = Ia it
(C-2)

Using the notation indicated in Equation (II-4.2) we have

xii = I
a R a Ni ((v-3)

Substituting this equation into Equation (C-1) yields

RI Ni =

[INiINi

RN iINi

IN iRN i

RN iRNI
iii

. (C-4)

Using Equations (II-3.3), (II-3.5), and (II-3.6) we intro-

duce the assumption that ui is isotropic. quation (II-5.5)

follows.

given by

gap = Ni (I
Lg J
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APPENDIX D

Tne Calculation of x in 3

In studying the geometry of a surface it is useful to

calculate the covariant derivatives of the quantities xiR.

In Q3 they are given by

xiR = iR 6YxiRxJRxJR
a deno P- condY ap

Tne quantities x Rdenote second partial derivatives

iR 82XJR

aCP aV' av 

(D-1)

(D-2)

Using the fact tnat we have isothermal paramneters, 5qua+,ion

(D-1) bcomes

iR iR
X = p - xiR xJ xJR

8 8 a4 (D-3)

where ), is given by Equation (II-4. 8 ). From zquatior

(B-3) we have

iR
x

aB
= [R -I -I -R] N' .

ap i
(D-4)

Proceeding to evaluate the right side of Equation (D-3) we

have

XJRXJR 
8 ap

1 R N[
[NR] (R

I_ Ii
-I -I -R] i

RN RN I

=1 i

-IN RNI
j 

-RN INI RNjIN3 -RN RN 1

IN INI ININI INRN . (D-5)
ti J i i i 
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Using the assumption that u is isotrovic we substitute

using _equations (II-3.12) and (TI-3 13).

I I -R

R R I ,a N 9

(D-6)

Multiplying on the left by xiR we have
8

xiRJRx JR = R
x8 x ap -I8 Ni

L- I

I I -R

R R I 69ap

-I -R p

7 NN

(D-7)

Using quations (II-.8), (D-4) and (D-7), Equation (D-3)

becomes

R
iR

xap=
-IL~~ 

-Il
I 

(N i - )
-R k ~Nk

aB

Substituting Equatior. (II-4. 2 ) into the preceding result

gives 

iRR

L-I

l (u ) t #
R CL~i Ukk

Evaluating x iR in the particular case where u is given

by Equations (I-2645), (1-2.46) arid (I-2.47) we nave

(D-8)

(D-9)0

61
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iR
x

a, P

R -I

L-I -RJ ap

i

1-CC

MI

1+ Cr "

i

We may also express this resul& in terms ov vi, v2, P and

Q by substituting Equation (II-1.1) .

xiR = [+(1V)2+(V22

2v1

-2v 2

1-(v1)2_ (v2)2

(D-10)

_Q 

Jap

I M
L - QJV

(D-11)

i
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APPENDIX E

The Calculation of x in I3

In tne iaginary space I3 , tne formula for x F is

xii ii -h iilix jI (E-1)
a 6 ap 

From Equation (0-3) we have

iix = I
ap~ R R -I]ap N; (E-2 )

Proceeding to evaluate the right side of Equation (E-1) we

have

a f I E lXjixj = |N: (I

LN IN JF J
RN IN'I

R R -I] N'
apf j

IN RN ' IN RN' - IN INI
i i R6j i 

RN R C RN RN'J -RN IN 'Gii ii .1 ,a 

(i6-3)

Using the assumption that ui is isotropic we substitute

using Equations (II-3.12) and (II-3.13).

X Ixji =
6 a

LR

CI

I I -R

N iR

R R I 6,ap

(E-4)

Multiplying this equation by Equation (0-3) we have

xiIX jIX ji =8 6 cap 
FR IJ

aDP

2 NiNN; (E-5)
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Using Equations (II-4.8), (-2) and (s-5), Equation (-1)

becomes

X = I | (F L ' (E-6)a :LR -IN'
Substituting Equation (II-4.2) into the preceding result

gives

xai13 ] NIPk (E-7)

Evaluatinr x ii in the particular case where ui is iven

by Equations (I-2.45),(I-2.46), and (I-2.47) we have

= [ i~c~ (S-8)
I ~ ~ 1C R

Substituting Equation (II-1.1) we may express this result as

2v 1

xii i..
12(v -2v 2

* (E-9)

l-v) -_(v22)2 ap

r-A



NRL REPORT 7651

APPENDIX F

The Second Fundamental Forms in 3 and I3

The second fundamental form b of a surface in R3

3 -ap3or I is defined by the equation

X =b v (F-1)

where v is a unit vector normal to the surface. Observe

that the exDression

2v1

i= [ + ( 2 +(v2)2f' .-2v 2 (F-2)

l-(v1)2_ (v2)2

which appears in Equation (D-ll), is a unit vector. It fol-

lows that the second fundamental form in R3 is given by

bap = (F-3)

Likewise, from Equation (-9) it follows that the second

fundamental form in I3 is given by

= [ PFL

LPp = ( F-4 )
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APPENDIX G

The Gaussian Curvature in 3 and I3

In 3 we may u., the ollowing formula for the Riemann

curvature tensor G.1, p.155]

(G-1)

Substituting Equation (D-9) into Equation (G-1) gives

o o 0 

-RR-II RR+II 0
(I

RR+II -RR-II 0 i

0 0 O ap, 

(G-2),ukujuj t,
uk

-0

0

0

I0

We are led to the following formula for the Riemann curvature

tensor in :

RaL"pA

O 0 0 0

O -1 1 0

0 1 -1 0

O 0 0 ap,

In the imaginary space

,_, _,j~U \
aiU- u l

i i Uk k
. (G-3)

I3 the Riemann curvature tensor is

given by the formula

R = x x 1 1
aphp~ xCL,x. r3,,L -xiI xii

a,,u Pth

Substituting Equation (E=7) into Equation (G-4) again leads

to Equation (G-3).

The Riemann curvature scalar is given by the formula

R

(G-4)

R �_ xiR XiR - XiR XiR
aphp .,% pop a PA .
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R = R gPA'gI ' . (-5)

Since we have isothermal parameters, ga is given by

ga = X-1l ap (G-6)

Substituting Equation (G-6) into Equation (-5) gives

Rapa*( -)

'de obtain a formula for the Riemann curvature scalar by

substituting Equations (II-4.8) and (-3) into Equation (-7).

8 (u i ujii uiuiuju)(

R = -(ukik) ffgV Ef (G-8)

The Gaussian curvature of a surface is iven by the formula

K = - R . (;-9)

Substituting quation (G-8) into Equation (-9) gives Equa-

tion (IV--1.12) as a formula for the Gaussian curvature.
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APPENDIX H

The Calculation of' x in R

In R the covariant derivatives of the quantities

xiA are given by the formula
a

(H-1)xi A = XiA _ g6-Yxi AX JBX Jr

Tne quantities x iA denote second partial derivatives.

iA -2xiA

ap ava vp
(H-2)

Using the fact that we have isothermal araeters in which

case the -metric tensor is given by Equation (Il-2.3), Equa-

tion (H-1) becomes

iA xiA -1xiA B JB
-~ a - ~ 6 X6 Xcpf S

(H-3)

Takinga the partial derivative with respect to vp of each

side of Equation (A-8), we obtain

iA R

aB I

'We proceed in

JB JB 
6 ap

[I a = 11,12,21,22 . (H-4)
-I -I -R

N.
R R -I

_ , ap

evaluating the right

R I R -I

-I R 6BNI R

s ide

-I

R

of Equation (H-3)

-RI

-I B,ap 

-I -I -R
N I

R R -I 6 ,aBi 
(H-5)
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iA
Aultiplying on the left by x 6 we have

AXjBxJB -[R ] -I [ -I -1 ] N
X1j X, ap I R N i I R R -I N,

.R -I R

- I R R -I N1 NN * (H-6 )

Using quations (II-2.4), (H-4) and (H-6); Jquation (H-3)

becomes

iA [: -I-I IIR 3(N NN.NNi
gI R R -IA,ap NkNk (H7

Substituting Equation (II-i4.2) into the preceding equation

gives the result

's LI R R -IlA ( kuk (H-8)

This result depends only up-on the asisuption that the edge

of regression-isan analytic curve. We proceed to evaluate

Xa in the particular case where ui is given by Equations

(I-2.45), (1-2.46) and (I-2.47).

ukuk = 1i (H-9)

Substituting this expression into Euation (H-8) gives
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iA
xQ,1 3

R -I

I R

_ _

-I -R
i (C-Z)

R - .
_A, a_ - C_1

(fH-a)
1 +C I

Using the notation

= P + iQ (H-1l)

along with Equation (II-1.1) we may express Equation (H-10)

as

Xi A = [+(Vl)2+(v2)2J 1

2v1

-2v 2

_1-(v1)2 (v2)2

,,, Of M,

IQ P F" A - Q
L -A, ap 

i
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APPENDIX I

Tne Second Fundamental Form in R6

In a space of greater than three dimensions- the second

fundamental form of a surface is defined differently from

the way it is defined in a three dimensional space. Rather

than being given by Equation (-1), it is given by (&.2,

p. 166]

n = iA iA(I1
apy6 x,,3 Xy,6

By substituting Equation (H-8) into Equation (I-1) we obtain

the following expression for the second fundamental form in

%6

1 0 0 -1

0 1 1 0
nCPAP1 E "' X" (I-2)af~~4L 0 1 1 0

-1 0 0 1

where

2-

s= u' | .lU = (I-3)

We shall proceed to evaluate in the special case

where u is given by Equations (I-2.45) - (I-2.47). We

first evaluate E

k 1 ( CCl)2 (I-4)

i I
(I-5)
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(I-6)

(I-7)

:-8)s t 2Ci'+ - 1 ( oZ+1)2 = 1 I

Substituting this value of into Equation ( I-2 ) gives

1 0 0 -1

0 1 1 0

0 1 1 0

-1 0 0 1
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APPENDIX J

The Gaussian Curvature in 6

The Riemann curvature tensor in 6 is given by the

f'or.nul a

RaPX4, =_ Qap - QaLph (J-1)

Substituting Equation (I-2) into this formula gives:

0

0
R 

ap hp0

0

-2

2

0

0

2

-2

0

0

0

0

0

- ujuu~~. It:'
I1 I 1 i A 1 Af nus (uu - uit 

i i kuk/
(J- 2)

We obtain a formula for te Riemann curvature scalar by sub-

stituting Equations (II-2.4) and (J-2) into Equation (G-7).

Mi(ujujuj iiuji)
R= 3 I-MI (J-3)

(ukik) " X

Substituting Equation (J-3) into Equation (G-9) gives Eoua-

tion (IV-2.1) as a formula for the Gaussian curvature.
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APPENDIX K

Geodesic urvature on the Surface in Pv6

The curvature K of a eodasic passing trough a point

on the edge of regressior. in R in the direction of a unit

surface vector a11 is given by te formula (...2, p.165]

K2 = I n P a6,rBnYfrl
8

I (K-1)

We express the assumption that '1a is a unit vector as

alp= 1 . (K-2)

Since we have isothermal parameters, we may substitute for

, a using Equation (II-2.3). This gives

Ta~na = ,- 1 (K-3 )

Substituting Equation (I-2) into Equation (K-1) we have

2x= (. Q)2 (uiu~ki y"_ ) I 2 (K-4)

Substituting Equation (K-3) into this equation ives Equa-

tion (IV-2.3).
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APENDIX L

The Catenoid

We may represent the partial derivatives of Equations

(V-2.1) - (V-2.3) with respect to wa as

s in w2 s inh w cos 2 cosh w

1

cos w2 sinh w1 -sin W2 cosh w

Using Equation (Dm3) we

tives of the quantities

sin w2

cosa w

iR 1
xapP = -tanh w 0

C08 W2n O2

cosh W1

0 1 - Csil
L - aJ os

may calculate the covariant deriva-

given by Equation (L-1).

s in w20 - s i w
cosh w

O t anh w1

cos W2
0 - i

cosh w api

n W2

kh wl

1 Cosw2]
,t anh w , 

cosh w
:1

Comparing this result with Equation (F-1) we see that

unit vector normal to the surface is given by

F sill w2 1 Cos w2= - sh 1 , tanh - ct Wl
cosh w cosh w

(L-2)

the

(L-3)

and the second fundamental form is given by

iR a _a
0 (L-1)

ia
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b -1 0

bap 0 1
aab

iequations (V-2.26) and (V-2.27) peay be expressed as

aw = -I -R

a ii-RI
6a

Substituting quations

2

yields

[-R - I [0 1. RI -I

aS 6p V

-2IR 2

-RR+II i+c
2

a P

(L-5)

(L-4) and (L-5) into Equation (V-1.3)

2

E RR-II

L -2IR

[R -I

-I -Rg
(L-6)

afp

From this result we have quations (V-2.28) and (V-2.29).

(L-4)
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APPENDIX M

The Right helich

Differentiating quations (-3.1) - (V-3.3) with respect

to a ives

cos w2 wl in w2

XiR = sin w2 w cos W2 (M-1)
a

0 k J
ia.

Substituting Equation M-1) into E~quation (B-1) gives the

following result for the metric tensor

- Cs 2 1w i w2cos W2 sin W2 01 cos w -w sin W

9=, 2 2l1sin w2 w1 cos w2

-w sin w w 1 cos 2 k a k ]
1 0

= L~ (wl)2+k2
1 (M-2)

o ( ) 2+k2

We will also need the contravariant form of the metric tensor

which is given by

[o [(wl)2 +k 2l (M-3)

We obtain the quatities xiR by differentiating Equation

(M-1) with respect to wp .
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0

-sin w2

-sin w2

_wlcos w2

0

Cos w2

Cos w2

-w 1sin 2

(M-4)

ap,i

The Christoffel symbols may be calculated using the equations

r =1 6Y +
apf = g + aw

* (M-5)
awp

Sutstituting Equations (M-2) and (M-3)/kinto Equation (M-5)

gives

1

a P 7 o [ (Wl )

[0

=

0

wl

(wi )2+k-

0

8V__

0

w1

(w ) +k

0 0 -2w

2w1 2w1 0]

-wl-

6,apc .

The quantities x iR are iven by the formula

a,~ p p8iR

,Y, a p

(M-6)

(M-7)

Evaluating the term r6 iR we havea4 8

iR _
x

0

0

0

0
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0 0

o wl/[(Wl) 2+k 2 J

o wl/1(wl)2+k2j

0

2
cos W

_W sin w2

sin w2 o

Wicos W2 k
8,i

ap, 

0

-(w) 2sin w2

(w1 ) 2+k2

_(Wl) 2sin w2

12 2
(w ) +k

-Wi Cos 2

0

(w1) cos 2

(w ) +k

(w )co W2

( w ) +k

-W1 S in W2

0

kw1

(w1 ) +k2

kwl

( w1 ) +k

0

(M-8)

aL pi

Substituting this result and Equation (M-4) into Equation

(M-7) gives

0

-k sin w2
1 2k2

-k sin w
(w1 )2+k2

0

0

k2Cos 2

2 2k'cos w
1 2 2(w ) +k

k2 Cos w2

W12 2

0

(M-9)

apc i 3

This equation can be expressed as

r6 iR
a3 6

-Wi

F

o

-kw1

(W 2+k2

(wI
*kw1
22W1

1) 2+k2

o
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iR 2k [o
a (w1 ) 2+k2 Li ] [k sin w2 , -k cos w2, w . (M-10)

apf

Comparing this result with quation (F-1) we see that tne

unit normal vector is iver by
-1

V 1w 2) (W) 2 +k 2 ] [k sin w 2 -k cos w, w j

and the second fundanaental form is given by

ba= -k L ) +k [ 1]

ap 3

(M-12)

Equations (-3.22) - (V-3.25)

-kv 1 [L+(vl )2+(v2)2]

2 [(vl)2+(v2)23/2
aw6

ava -kv 2 L+(Vl)2+(v2)2]

2 [(V )2+(V2)2]37

may be written

2
v

(v1)2+(V2)2

-v

(v1)2+(v2)Y

The following expression which appears in Equation (-12)

is expressed in terms of the v-coordinates.

1 2 2( ) +k 2 =
k2 [1_( vl )2_( v2 )2] + 4~k2 [f Vl)2+ ( v)2]

4[( 2 +( [(v)+(v )2]
41( ~ ~ ~ ~v ) +(v 2]

k[1+(vl 2 +(2 2]2

4 [(v' )2+(v2)2]
(M-14 )

When this expression is substituted into Equation (M-12) it

becomes

(M-ll)

(M- 13 )

a6
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2[(vl 2+ (v2) 2]/ 11
b 6 - (2 +(V22 0 1

iy +(v)+(v2)2 L1 0
(M-15)

8Y 

a'e obtain the second fundamental form in the v -coordinate

system by substituting quations (4-13) and (-15) into

Equati on (V-1. 3) .

2v1v 2

boxy - L v 22
bap = k I~v ) +(v )

- 1)2_ (V2)2-

-2v 1v2

ap- 

From-this result we have Equations (V-3.26) and (V-3.27).

(.'4-16)
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